

CREATED BY SCHWEITZER

What is the difference between a strong and weak acid?

 A strong acid will dissociate 100 % where as a weak acid will only dissociate minimally.

Graphical difference between Strong and weak

Dissociation of a Strong Acid

After dissociation, at equilibrium

Dissociation of a Weak Acid

Ap Question

Compared to a weak Arrhenius acid, a strong Arrhenius acid.

- a. is more soluble in water
- b. is a better oxidizing agent
- c. is more highly ionized on water solution
- d. has more available protons per molecule
- e. has stronger bonds between hydrogen and oxygen atoms.

Strong Acid.....WHO??

- 6 strong acids
 - $-HCI_{(aq)} \rightarrow Hydrochloric acid$
 - −HBr_(aq) → Hydrobromic acid
 - HI_(aq)→ Hydroiodic acid
 - $-HNO_{3(aq)} \rightarrow Nitric acid$
 - $-H_2SO_{4(aq)} \rightarrow$ sulfuric acid
 - $-HCIO_{4(aq)} \rightarrow$ Perchloric acid

WEAK ACID......WHO????

IF IT QUALIFIES AS AN ACID

STARTS WITH "H" AND IS IN WATER

BUT, IS NOT A STRONG ACID THEN IT MUST BE......

STRONG OR WEAK???

- $HCI_{(aq)} \rightarrow$
- $HC_2H_3O_{2(aq)} \rightarrow$
- $HF_{(aq)} \rightarrow$
- $HCIO_{(aq)} \rightarrow$

- $HCl_{(aq)} \rightarrow STRONG$
- $HC_2H_3O_{2(aq)} \rightarrow$
- $HF_{(aq)} \rightarrow$

• $HCIO_{(aq)} \rightarrow$

- $HCl_{(aq)} \rightarrow STRONG$
- $HC_2H_3O_{2(aq)} \rightarrow WEAK$
- $HF_{(aq)} \rightarrow$

• $HCIO_{(aq)} \rightarrow$

- $HCl_{(aq)} \rightarrow STRONG$
- $HC_2H_3O_{2(aq)} \rightarrow WEAK$
- $HF_{(aq)} \rightarrow WEAK$

• $HCIO_{(aq)} \rightarrow$

- $HCl_{(aq)} \rightarrow STRONG$
- $HC_2H_3O_{2(aq)} \rightarrow WEAK$
- $HF_{(aq)} \rightarrow WEAK$

• $HCIO_{(aq)} \rightarrow WEAK$

Q: Can a strong Acid neutralize more base then a weak acid? A: No. HCI VS. HCN

- Both Acids contain the same number of Hydrogen atoms.
- 1 hydrogen can neutralize 1 OH⁻ from a base.
- $HCI + NaOH = NaCI + H_2O$

STRONG BASES....WHO

- 100% DISSOCIATION
- X OH
- $X = METAL FROM 1^{ST} OR 2^{ND} FAMILY$ - EXCEPT: Be
- MOST METAL-HYDROXIDES ARE
 NEARLY INSOLUBLE

Strong or weak base?

- Be(OH)₂
- KOH

NaOH

• NH₃

Strong or weak base?

- Be(OH)₂ Weak
- KOH strong
- NaOH strong
- NH₃

Weak

$-\log [H^+] = pH$

- For a solution of .05M HCl you simply put the .05M into the [H⁺] (very simple)
 - Why can we do this?????
 - $-HCI \rightarrow H^+ + CI^-$
 - -10 0 0
 - -0 10 10
 - The number or concentration of HCI is proportional to the H⁺ ions
 - But....
 - $HF \rightarrow H^+ + F^-$
 - 10 ? ?

How do scientist deal with weak acids and bases????

- After many experiments it turns out that an acid or base (at a specific temperature) will always produce the same ratio of original acid to ionized product.
- This ratio is called
 - Ka: Weak acids
 - Kb: weak bases

Ka & Kb

- Ka = [P]/[R]
- Notice: a strong acid has no reactant left over. So the fraction above would be undefined or astronomically large.
 - Therefore would not be practical
- $HF \rightarrow H^+ + F^-$
- $10 \rightarrow 0$ 0 (initial)
- 5 \rightarrow 5 in this theoretical problem what is the ka???
- 1

Ka & Kb (cont')

- [P]/[R] = 1
- This means we are directly in the middle.
- Equal amounts of products and reactants.
- $HX \rightarrow H^+ + X^-$
- K_a > 1 (increased products, increased acidity)
- Ka < 1 (decreased products, decreased acidity)

Hydrolysis reactions

 ALL equilibrium expressions for weak acid base reactions are based of hydrolysis reactions!

• Examples: HF Hydrofluoric acid $HF_{(aq)} + H_2O_{(I)} \rightarrow H_3O^+_{(aq)} + F^-_{(aq)}$ $Ka = [H_3O^+][F^-]/[HF]$

F⁻ is the conjugate base

- F⁻ is the conjugate base so it is a weak base and will also under go hydrolysis.
- $F_{(aq)}^- + H_2O_{(I)} \rightarrow HF_{(aq)}^- + OH_{(aq)}^-$ - $Kb = [HF][OH^-]/[F^-]$

AP Question

Which equation best illustrates the ionization behavior of liquid ammonia? $a.NH_3 <= => 3H^+ + N^{-3}$ $b.NH_3 <= => NH_2^- + H^+$ $C.NH_3 + NH_3 <= => NH_4^+ + NH_2^$ $dH_2O + NH_3 \le H_3O^+ + NH_2^$ $e.H_2O + NH_3 <= => NH_4^+ + OH^-$

AP Question

- Which applies to a concentrated solution (15M) of NH₃ in water?
- Kb = 1.8E-5 for NH₃ in water at 298K
- I. $[OH^{-}] = [H_3O^{+}]$
- II. The percent ionization of NH₃ is nearly 100%
- III. Of all ions and molecules present, the greatest number is water molecules
- a. I only d. I and II only
- b. III onlye. I, II , and III
- c. II and III only

Equilibrium Expressions

- Ammonia vs. Ammonium
- Write out the hydrolysis equations

Equilibrium Expressions

- Ammonia vs. Ammonium
- $NH_{3 (aq)} + H_2O_{(I)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$
- $NH_4^+_{(aq)} + H_2O_{(I)} \rightarrow NH_{3(aq)} + H_3O^+_{(aq)}$
- Write out the Equilibrium expressions

Equilibrium Expressions

- Ammonia vs. Ammonium
- $NH_{3(aq)} + H_2O_{(I)} \rightarrow NH_4^+_{(aq)} + OH_{(aq)}^-$
- $NH_4^+_{(aq)} + H_2O_{(I)} \rightarrow NH_{3(aq)} + H_3O^+_{(aq)}$
- $Ka = [NH_4^+][OH^-]/[NH_3]$
- $Kb = [NH_3][H_3O^+]/[NH_4^+]$

- e. [CO₂][OH⁻]/[CO₃²⁻]
- d. $[CO_3^{2-}][H^+]/[HCO_3^{-}]$
- c. [HCO₃⁻][OH⁻]/[CO₃²⁻]
- b. $[CO_2][H^+]/[CO_3^{-2}]$
- a. [CO₃²⁻][H⁺]/[HCO₃⁻]

Which gives the mass action expression for hydrolysis of the CO_3^{2-} ion?

AP Question

What are the factors that affect the pH of Weak Acid or base 1. Ka or Kb

2. Original concentration

Analogy: Monetary investment at 2% return. If you want to get more money you either need to increase % return or increase initial investment.