What is the difference between a strong and weak acid?

- A strong acid will dissociate 100 \% where as a weak acid will only dissociate minimally.

Graphical difference between Strong and weak

Dissociation of a Weak Acid

Ap Question

Compared to a weak Arrhenius acid, a strong Arrhenius acid.
a. is more soluble in water
b. is a better oxidizing agent
c. is more highly ionized on water solution
d. has more available protons per molecule
e. has stronger bonds between hydrogen and oxygen atoms.

Strong Acid.....WHO??

6 stirong acids
$-\mathrm{HCl}_{(\text {eq) }} \rightarrow$ Hydrochloric acid
$-\mathrm{HBr}_{(\mathrm{aq})} \rightarrow$ Hydrobromic acid
$-\mathrm{HI}_{(\mathrm{aq})} \rightarrow$ Hydroiodic acid
$-\mathrm{HNO}_{3(\text { aq) }} \rightarrow$ Nitric acid
$-\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow$ sulfuric acid
$-\mathrm{HClO}_{4(\mathrm{aq})} \rightarrow$ Perchloric acid

WEAK ACID......WHO????

- IF IT QUALIFIES AS AN ACID - STARTS WITH "H" AND IS IN WATER
- BUT, IS NOT A STRONG ACID THEN IT MUST BE..........

STRONG OR WEAK???

- $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow$
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightarrow$
- $\mathrm{HF}_{(\mathrm{aq})} \rightarrow$
- $\mathrm{HClO}_{(\mathrm{aq})} \rightarrow$

ANSWERS

- $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow$ STRONG
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq)}} \rightarrow$
- $\mathrm{HF}_{(\mathrm{aq})} \rightarrow$
- $\mathrm{HClO}_{(\mathrm{aq})} \rightarrow$

ANSWERS

- $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{STRONG}$
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq)}} \rightarrow$ WEAK
- $\mathrm{HF}_{(\mathrm{aq})} \rightarrow$
- $\mathrm{HClO}_{(\mathrm{aq})} \rightarrow$

ANSWERS

- $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{STRONG}$
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq)}} \rightarrow$ WEAK
- $\mathrm{HF}_{(\mathrm{aq})} \rightarrow$ WEAK
- $\mathrm{HClO}_{(\mathrm{aq})} \rightarrow$

ANSWERS

- $\mathrm{HCl}_{(\mathrm{aq})} \rightarrow$ STRONG
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})} \rightarrow$ WEAK
- $\mathrm{HF}_{(\mathrm{aq})} \rightarrow$ WEAK
- $\mathrm{HClO}_{(\mathrm{aq})} \rightarrow$ WEAK

Q: Can a strong Acid neutralize more base then a weak acid?

- A: No.
- Both Acids contain the same number of Hydrogen atoms.
1 hydrogen can neutralize $1 \mathrm{OH}^{-}$from a base.
$\mathrm{HCl}+\mathrm{NaOH}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

STRONG BASES....WHO

- 100\% DISSOCIATION
- $\mathrm{X}-\mathrm{OH}$
- X = METAL FROM $1^{\text {ST }}$ OR $2^{\text {ND }}$ FAMILY - EXCEPT: Be
- MOST METAL-HYDROXIDES ARE NEARLY INSOLUBLE

Strong or weak base?

- $\mathrm{Be}(\mathrm{OH})_{2}$
- KOH
- NaOH
- NH_{3}

Strong or weak base?

- $\mathrm{Be}(\mathrm{OH})_{2}$ Weak
- KOH
strong
- NaOH strong
- NH_{3}

Weak

$-\log \left[\mathrm{H}^{+}\right]=\mathrm{pH}$

- For a solution of .05M HCl you simply put the .05 M into the $\left[\mathrm{H}^{+}\right]$(very simple)
- Why can we do this?????
$-\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
-1000
$-0 \quad 10 \quad 10$
- The number or concentration of HCl is proportional to the H^{+}ions
- But....
- HF $\rightarrow \mathrm{H}^{+}+\mathrm{F}^{-}$
-10
?
?

How do scientist deal with weak acids and bases????

- After many experiments it turns out that an acid or base (at a specific temperature) will always produce the same ratio of original acid to ionized product.
- This ratio is called
- Ka: Weak acids
- Kb: weak bases

Ka \& Kb

- $\mathrm{Ka}=[\mathrm{P}] /[\mathrm{R}]$
- Notice: a strong acid has no reactant left over. So the fraction above would be undefined or astronomically large.
- Therefore would not be practical
- $\mathrm{HF} \rightarrow \mathrm{H}^{+}+\mathrm{F}^{-}$
- $10 \rightarrow 0 \quad 0$ (initial)
- $5 \rightarrow 5 \quad 5$ in this theoretical problem what is the ka???
- 1

Ka \& Kb (cont')

- $[\mathrm{P}][\mathrm{R}]=1$
- This means we are directly in the middle.
- Equal amounts of products and reactants.
- $\mathrm{HX} \rightarrow \mathrm{H}^{+}+\mathrm{X}^{-}$
- $\mathrm{K}_{\mathrm{a}}>1$ (increased products, increased acidity)
- $\mathrm{Ka}<1$ (decreased products, decreased acidity)

Hydrolysis reactions

- ALL equilibrium expressions for weak acid base reactions are based of hydrolysis reactions!
- Examples: HF Hydrofluoric acid

$$
\begin{gathered}
\mathrm{HF}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{F}_{(\mathrm{aq})}^{-} \\
\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{F}] /[\mathrm{HF}]
\end{gathered}
$$

F^{-}is the conjugate base

- F^{-}is the conjugate base so it is a weak base and will also under go hydrolysis.
- $\mathrm{F}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{HF}_{(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq})$
$-\mathrm{Kb}=[\mathrm{HF}][\mathrm{OH}] /[\mathrm{F}-]$

AP Question

Which equation best illustrates the ionization behavior of liquid ammonia?
a. $\mathrm{NH}_{3}<==>3 \mathrm{H}^{+}+\mathrm{N}^{-3}$
b. $\mathrm{NH}_{3}<==>\mathrm{NH}_{2}^{-}+\mathrm{H}^{+}$
c. $\mathrm{NH}_{3}+\mathrm{NH}_{3}<==>\mathrm{NH}_{4}^{+}+\mathrm{NH}_{2}^{-}$
d. $\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}<==>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{2}^{-}$
e. $\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}<==>\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

AP Question

- Which applies to a concentrated solution (15M) of NH_{3} in water?
- $\mathrm{Kb}=1.8 \mathrm{E}-5$ for NH_{3} in water at 298 K
- I. $\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- II. The percent ionization of NH_{3} is nearly 100%
- III. Of all ions and molecules present, the greatest number is water molecules
- a. I only d. I and II only
- b. III onlye. I, II , and III
- c. II and III only

Equilibrium Expressions

- Ammonia vs. Ammonium
- Write out the hydrolysis equations

Equilibrium Expressions

- Ammonia vs. Ammonium
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
- $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{3(\mathrm{aq)}}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
- Write out the Equilibrium expressions

Equilibrium Expressions

- Ammonia vs. Ammonium
- $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}_{(\mathrm{aq})}$
- $\mathrm{NH}_{4}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
- $\mathrm{Ka}=\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right] /\left[\mathrm{NH}_{3}\right]$
- $\mathrm{Kb}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] /\left[\mathrm{NH}_{4}{ }^{+}\right]$

AP Question

Which gives the mass action expression for hydrolysis of the $\mathrm{CO}_{3}{ }^{2-}$ ion?
a. $\left[\mathrm{CO}_{3}{ }^{2}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$
b. $\left[\mathrm{CO}_{2}\right][\mathrm{H}+] /\left[\mathrm{CO}_{3}{ }^{-2}\right]$
c. $\left[\mathrm{HCO}_{3}\right][\mathrm{OH}-] /\left[\mathrm{CO}_{3}{ }^{2}\right]$
d. $\left[\mathrm{CO}_{3}{ }^{2}\right][\mathrm{H}+] /\left[\mathrm{HCO}_{3}{ }^{-}\right]$
e. $\left[\mathrm{CO}_{2}\right][\mathrm{OH}] /\left[\mathrm{CO}_{3}{ }^{2}\right]$

What are the factors that affect the pH of Weak Acid or base
 1. Ka or Kb

2. Original concentration

Analogy: Monetary investment at 2% return. If you want to get more money you either need to increase \% return or increase initial investment.

